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Abstract. In this paper, we study a rank-based model for weighted network. The evolution rule of the
network is based on the ranking of node strength, which couples the topological growth and the weight dy-
namics. Analytically and by simulations, we demonstrate that the generated networks recover the scale-free
distributions of degree and strength in the whole region of the growth dynamics parameter (α > 0). More-
over, this network evolution mechanism can also produce scale-free property of weight, which adds deeper
comprehension of the networks growth in the presence of incomplete information. We also characterize the
clustering and correlation properties of this class of networks. It is showed that at α = 1 a structural phase
transition occurs, and for α > 1 the generated network simultaneously exhibits hierarchical organization
and disassortative degree correlation, which is consistent with a wide range of biological networks.

PACS. 89.75.-k Complex systems – 89.75.Hc Networks and genealogical trees

1 Introduction

A major source of the recent surge of interest in complex
networks has been the discovery that a large number of
real-world networks have power-law degree distributions,
so called scale-free networks [1–4]. Due to the peculiar
structural features and the critical dynamical processes
taking place on them [5–8], there have been a tremendous
number of works modeling networks with scale-free prop-
erties. The previous models of complex networks always
incorporate the preferential attachment [4], which may re-
sults in scale-free properties. That is, a newly added node
is connected to preexisting one with a probability exactly
proportional to the degree or strength of the target node.
In reality, however, this absolute quantity information of
an agent is often unknown, while it is quite common to
have a clear idea about the relative values of two agents.
In this perspective, Fortunato et al. recently introduced
a criterion of network growth that explicitly relies on the
ranking of the nodes according to the prestige measure [9].
This rank-based model can well mimic the reality in many
real cases that the relative values of agents are easier to
access than their absolute values.

All of the researches mentioned above focused on the
topological aspect of graphs, that is, unweighted networks.
Recently, the availability of more complete empirical data
has allowed scientists to consider the variation of the
weights of links that reflect the physical characteristics
of many real networks. It is well-known that networks are
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not only specified by their topology but also by the dy-
namics of weight taking place along the links. Take the
world-wide airport networks (WAN) [10–12] for example:
each given link weight wij is the number of available seats
on direct flight connections between the airports i and
j. In the scientific collaboration networks (SCN) [13–15],
the nodes are identified with authors and the weight de-
pends on the number of coauthored papers. In the light
of this need, Barrat, Barthélemy, and Vespignani (BBV)
proposed a model that integrated the topology and weight
dynamical evolution to study the growth of weighted net-
works [16–18]. Their model yields scale-free properties of
the degree, weight, and strength distributions, controlled
by an introduced parameter δ. Recently, Wang et al. have
studied the creation and reinforcement of internal connec-
tions in weighted network evolution [19–21], which is not
considered in BBV model. On the other hand, Wu et al.
integrated the deactivation mechanism in the evolution of
weighted networks [22].

A weighted network is often denoted by a weighted ad-
jacency matrix with element wij representing the weight
of the link connecting node i and j. In the case of undi-
rected graphs, weights are symmetric wij = wji, as we
will focus on. A natural generalization of connectivity in
the case of weighted networks is the node strength de-
fined as si =

∑
j∈V(i) wij , where the sum runs over the

set V(i) (neighbors of node i). This quantity is a natu-
ral measure of the importance or centrality of a node in
the network. As confirmed by measurement, real networks
not only exhibit scale-free degree distribution P (k) ∼ k−γ

with 2 ≤ γ ≤ 3 [10,11], but also the power-law strength
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distribution P (s) ∼ s−η [11] and weight distribution
P (w) ∼ w−θ [12]. Moreover, the strength is highly cor-
related with the degree, and usually displays a scale-free
property s ∼ kβ [23,24].

In this paper, we propose a model for weighted network
evolution with only ranking information available. We
demonstrate that the generated networks recover scale-
free distributions of degree and strength. Interestingly,
this network evolution mechanism can also produce scale-
free property of weight, which is obtained analytically and
by simulations. This feature adds deeper comprehension
of the networks growth in the presence of incomplete infor-
mation. The clustering and correlation properties of this
class of networks are also investigated, and we found the
generated network simultaneously exhibits hierarchical or-
ganization and disassortative degree correlation.

2 The model

In the present model, the prestige ranking criterion is
strength. The definition of the model is based on two cou-
pled mechanisms: the topological growth and the weights’
dynamics. The model dynamics starts from an initial seed
of N0 nodes connected by links with assigned weight w0.

(1) Topological growth. At each time step, a new node n
is created and m new links, with an assigned weight
w0 to each, are set between node n and pre-existing
nodes. The previous nodes are ranked according to
their strength, and the linking probability that the new
node be connected to node i depends on the rank Ri

of i:

Πn→i =
R−α

i∑
ν R−α

ν
, (1)

where α > 0 is a real-valued parameter. Note that the
larger the rank of the node is, the more difficult for it
to gain new links, which is reasonable in real life.

(2) Weights’ dynamics. Analogous to the step in the model
proposed by Barrat et al. (BBV model) [16], the intro-
duction of the new link on node i will trigger local
rearrangements of weights on the existing neighbors
j ∈ V(i), according to the rule

wij → wij + δ
wij

si
, (2)

where δ is the total induced increase in strength of
node i.

3 Probability distributions

We firstly investigate the probability distribution of the
generated network. Since the strength-based ranking of a
node can change over time, it is hard to analyze the model
directly by the ranking of node strength. However, for a
growing weighted network, there is a strong correlation be-
tween the age of node and its strength, as the older nodes

Fig. 1. (Color online) Node strength versus node age with
α = 0.5, α = 1.0, and α = 2.0 from the top to the bottom.
Inset: Log-Log plot of the relation between node strength and
node rank by age. All the data are averaged over 100 indepen-
dent runs of network size N = 5000.

have more chances to receive links. For these considera-
tions, we check this correlation by numerical simulations.
Figure 1 shows the node strength as a function of its age.
It can be found that the function is monotone increasing
with certain fluctuations. Therefore, in the following an-
alytical approach, an approximation is made that we use
the ranking by age instead of strength.

The network growth starts from an initial seed of N0

nodes, and continues with the addition of one node per
unit time, until a size N is reached. Hence, each node is
labeled with respect to the time step of its generation,
and the natural time scale of the model dynamics is the
network size N . If the nodes are sorted by age, from the
oldest to the newest, the label of each node coincides with
its rank, i.e., Ri = i∀i. Therefore, the node strength si is
updated according to this evolution equation:

dsi

dt
= m

R−α
i∑

j R−α
j

(1 + δ) +
∑

j∈V(i)

m
R−α

j
∑

l R
−α
l

δ
wij

sj

= m
i−α

∑
j j−α

(1 + δ) +
∑

j∈V(i)

m
j−α

∑
l l

−α
δ
wij

sj
. (3)

Using the continuous approximation, we treat s, w, and
time t as continuous variables and approximate the sums
with integrals. Solving equation (3) yields the strength
evolution equation:

si(t) ∼
(

t

i

)α

. (4)

Consequently, we can easily obtain in the infinite size limit
the probability distribution:

P (s) ∼ s−(1+1/α), (5)

which shows that the strength distribution of the network
follows a power law with exponent η = 1 + 1/α for any
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value of α. It should be noted that this result recovers the
earlier one in reference [9].

Similarly to the previous quantities, it is possible to
obtain analytical expressions for the evolution of weights
and the relative statistical distribution. The rate equation
of weight wij can be written as:

dwij

dt
= m

R−α
i∑

j R−α
j

δ
wij

si
+ m

R−α
j

∑
j R−α

j

δ
wij

sj

= m
i−α

∑
j j−α

δ
wij

si
+ m

j−α

∑
j j−α

δ
wij

sj
. (6)

Incorporating with equation (4), the above equation can
be solved that wij ∼ (t/tij)2δ(1−α), where tij = max(i, j)
is the time at which the edge is established. Therefore, the
probability distribution P (w) is in this case also a power
law P (w) ∼ w−θ, where

θ = 1 +
1
α

+
1

2αδ
. (7)

This scale-free property of weight is indeed new for net-
works growth in the presence of incomplete information.
We think this result gives more evidence to the significance
of the present network evolution mechanism.

In order to check the analytical predictions, we per-
formed numerical simulations of networks generated by
the present model, where the prestige ranking criterion is
strength. In the upper pattern of Figure 2, we plot the
cumulative strength distributions of the networks corre-
sponding to various values of the exponent α. In the log-
arithmic scale of the plot, they exhibit power-law behav-
iors in agreement with theoretical results. The relation
between α and the exponent η of the strength distribu-
tion is showed in the lower pattern of Figure 2, which
confirms the validity of equation (5). Together, the power-
law distribution of weight P (w) is shown in Figure 3. The
analytical predictions can be well confirmed by numeri-
cal simulations. Noting the weights’ dynamics step in the
definition of the model, the triggered increase δ is only
arranged locally. Therefore, we expect the proportionality
relation s ∼ k, by which we easily obtain the scale-free
distribution of degree P (k) ∼ k−γ with γ = η = 1 + 1/α.
Since there exist no new properties, we do not show them
again here.

4 Clustering and correlation

Complex networks display an architecture imposed by the
structural and administrative organization of these sys-
tems that is not fully characterized by the distributions
P (k) and P (s). Indeed, the structural organization of com-
plex networks is mathematically encoded in the various
correlations existing among the properties of different ver-
tices. For this reason, a set of topological quantities are
customarily studied in order to uncover the network ar-
chitecture. The first widely used quantity is clustering of

Fig. 2. (Color online) The upper pattern shows the cumula-
tive strength distributions of networks generated by using our
model with different parameters α = 0.5, α = 1.0, α = 1.5, and
α = 2.0. The four dashed lines have slopes 2.00, 1.00, 0.67, and
0.50 separately for comparisons. The lower pattern shows the
value of the strength distribution exponent η as a function of
α obtained from numerical simulations. The dotted line is the
prediction of equation (5). All the data are averaged over 100
independent runs of network size N = 104.

nodes. The clustering of a node i is defined as

ci =
1

ki(ki − 1)

∑

j,h

aijaihajh, (8)

where aij is the adjacency matrix element of the network.
It measures the local cohesiveness of the network in the
neighborhood of the node. Indeed, it yields the fraction
of interconnected neighbors of a given node. The average
over all nodes gives the network clustering coefficient C
which describes the statistics of the density of connected
triples.

Further information can be gathered by inspecting the
average clustering coefficient C(k) restricted to classes of
nodes with degree k:

C(k) =
1

NP (k)

∑

i,ki=k

ci. (9)

In many networks, the degree-dependent clustering coef-
ficient C(k) is a decreasing function of k. It shows that
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Fig. 3. (Color online) Upper patterns: cumulative weight distributions of networks built according to the present model for
different value of (a) δ and (b) α. The lower patterns show the value of the weight distribution exponent θ as a function of δ
and α obtained from numerical simulations. The dotted lines are the prediction of equation (7). All the data are averaged over
100 independent runs of network size N = 104.

low-degree nodes generically belong to well interconnected
communities while high-degree sites are linked to many
nodes that may belong to different groups which are not
directly connected [25]. This is generally the signature of
a nontrivial architecture in which the high degree nodes
play a distinct role in the network.

Numerical simulations indicate that for α = 0.5 the
clustering coefficient C seems to converge to zero. This is
seen by the accurate fits to algebraic decay forms in Fig-
ure 4a. Meanwhile, C(k) is uncorrelated with k, denoting
that the network does not possess hierarchical structure.
For α = 2.0, C approaches a stationary value of about
0.9 in the limit of large N , which is showed in Figure 4b.
In this case, a simple scaling form of clustering coefficient,
C(k) ∼ k−1, is obtained, which indicates that the network
topology exhibits hierarchical manner.

Another commonly studied network property is the de-
gree correlation (or the mixing pattern) of node i and its
neighbor. The average nearest neighbor degree is proposed
to measure these correlations

knn,i =
1
ki

∑

j

aijkj . (10)

If degrees of the neighboring nodes are uncorrelated, knn,i

is a constant. When correlation are present, two main
classes of possible correlations have been identified: assor-
tative behavior if knn,i increases with k, which indicates
that large degree nodes are preferentially connected with
other large degree nodes, and disassortative if knn,i de-

Fig. 4. (Color online) Illustration of the average clustering
coefficient C as a function of networks size N for (a) α =
0.5 and (b) α = 2.0. The insets show the behavior of C(k)
depending on degree k. The curves in (a) is fit to algebraic
decay form, 2.50 × N−0.73. The solid line in the inset of (b)
has slope −1 for comparison. All the data are averaged over
100 independent runs.

creases with k, which denotes that links are more easily
built between large degree nodes and small ones.

A simpler measure to quantify this structure is assor-
tative mixing coefficient [26]:

r =
L−1

∑
i jiki − [L−1

∑
i

1
2 (ji + ki)]2

L−1
∑

i
1
2 (j2

i + k2
i ) − [L−1

∑
i

1
2 (ji + ki)]2

, (11)
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Fig. 5. (Color online) Illustration of the assortative mixing
coefficient r as a function of networks size N for (a) α = 0.5 and
(b) α = 2.0. The insets show the behavior of knn(k) depending
on degree k. The curves in (a) is fit to algebraic decay form,
−0.40×N−0.32. The solid line in the inset of (b) has slope −1
for comparison. All the data are averaged over 100 independent
runs.

where ji, ki are the degrees of nodes at the ends of the
ith edges, with i = 1, ..., L (L is the total number of edges
in the graph). This quantity takes values in the interval
[−1, 1], where positive values mean assortative and nega-
tive values mean disassortative.

The simulation results are shown in Figure 5. When
α = 0.5, the value of r converges algebraically to zero, and
knn(k) is unrelated with k, which denotes that correlations
are absent. On the contrary, when α = 2.0 the assortative
mixing coefficient is almost independent of network size
for large N . Meanwhile, knn(k) ∼ k−1, characterizing the
disassortative degree correlation in the network.

It is indicated that a structural phase transition oc-
curs when the growth dynamics parameter α = 1 [27].
For α < 1 (γ > 2), C(k) and knn(k) are observed as a
horizontal line subject to fluctuations, and clustering co-
efficient C and assortative mixing coefficient r converge
to zero in the large limit of network size N . For α > 1
(1 < γ < 2), there emerge a few hub nodes in the network
which are linked to almost every other site ,and the gener-
ated network exhibits hierarchical topology and disassor-
tative degree correlation. Moreover, the clustering coeffi-
cient C is independent of network size N and approaches
a high value.

5 Conclusion

To sum up, we studied a rank-based model for weighted
network. The scale-free properties of probability distribu-
tions of degree, strength, and weight are obtained analyt-
ically and by simulation. Furthermore, we investigate the
clustering and correlation of the network. Specially, in the
region of α > 1 (1 < γ < 2), the generated networks can
well mimic the biological networks which always appear
to be disassortative [26] and possess hierarchical organi-
zation [25,28–30]. We think that this class of network pro-

vides us with a new method to reconstruct the hierarchies
and organizational architecture of biological networks, and
it may be beneficial for future understanding or charac-
terizing the biological networks.
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